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ABSTRACT

A simple geometrical analysis haz-4.b4 developed which describes the

lowest-order transverse mode in an arbitrary unstable optical resonator

of large Fresnel number. The lowest mode is assumed to consist of two

oppositely traveling spherical waves which uniformly illuminate the two

end mirrors. The centers of curvature of these two waves (which are not

in general the mirror centers of curvature) are found by requiring that

each center be the image of the other upon reflection from the appropriate

spherical end mirror. The resonator losses, foundfrom simple geometrical

considerations, are given by simple analytical expressions and are entirely

independent of the mirror sizes. The equi-loss contours on the usual mode

chart are hyperbolae. The present results agree well with more exact results

calculated by Fox and Li for the unstable case, and with experimental results

on a ruby laser having a divergent spherical surface ground directly onto

the ruby rod. Unstable resonators of this type appear potentially useful

for transverse mode control and for diffraction output coupling.
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INTRODUCTION

Two flat or curved mirror surfaces erected facing each other form an

optical resonator or resonant cavity. Resonators of this type have been

extensively studied recently becauSe of their importance in laser ap-

plications. The properties of such resonators are found to depend strongly

in particular upon themirror curvatures relative to the mirror spacing.

If the spacing between the two mirrors is L and the mirror radii of

are R1 and R2  , as shown in the sketch of Fig. 1, it has been

found to be convenient to define the normalized curvature or g parameters5,6

= - L/R 1  , g' -1 R
2'2_

The mode properties of optical resonators can then be summarized on

the mode chart shown in Fig. I,_ where any given resonator is represented

by a single point somewhere on the chnrt.'3,6

The mode chart is divided into stable (shaded)and unstable regions.

The analytic condition

0 < gi g2 <

defines the shaded stable region. It is well established that if a re-

sonator lies well within the shaded stable region, its resonant modes

i-1



2 -/R
L 3

-----

M2

PLANAR

CON FOCAL

.2 3
g I L/R

FTG. 1--A general'optical resonator and the relevant mode chart which
.5ummarizes the mode stability properties. Resonators with g
valueS 'well inside the shaded, region are st~ble or low-loss;
those well outside are unstable and have high losses.
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can be found from a relatively exact closed-form analysis. The lowest-

order resonant modes are, in general, narrowly confined along the axis

of the resonator, the modes having gaussian transverse amplitude varia-

tions. The diffraction losses of such modes, i.e., the energy losses due

to energy leakage out the sides or past the mirror edges, are generally

very small.

Both the transverse dimensions of the modes and their diffraction

losses increase for resonators located near or on the stable-region

boundaries of the mode chart. The integral equations governing the re-

sonant modes must then be solved either by iterative numerical computa-

1i-4 1,15
tions or by various analytic expansions. In general, and speaking

very roughly, the resonant modes are somewhbt like th6 resonant waveguide

modes which would appear if the resonator had.,conducting instead of open

sides: and the diffraction losses increase rapidly as one passes through

the stablelunstable boundary.

The chief contribution of this paper i.a a simple analysis, based on

purely geometrical optical considerations, which predicts the lowest-order

mode and its diffraction loss for large.-Fresnel-number resonators located

in the unstable reieon of the mode chart. The results of this analysis

connect smoothly with the limited number of results which have been ob-

tained previously, using iterative numerical procedures, for modes on the

stablc-unstable boundary.4 In general, the diffracticn losses in the

unstable region turn out to be sizable, although not necessarily intolerable.

There is some practical interest in unstable resonators for laser

applications. As a general principle, in order to obtain transverse mode

selection, i.e., in order to obtain oscillation in a single lowest-order

- 3-



transverse mode pattern, one must have sizable diffraction losses. Other

loss mechanisms such as scattering and reflection are essentially the same

for all modes, only the diffraction losses being different for different

transverse modes. Hence, mode selection is obtained only if diffraction

losses form a significant fraction of the total losses. This can be

achieved in practice by using a stable resonator with small enough mirrors,

or by using a resonator located in (but not too far into) the unstable

region.

It has also been pointed out recently that efficient output coupling

from a laser can be obtained by means of diffraction coupling, i.e., by

employing the diffracted energy output from a laser resonator as the useful

* 16output. High gain lasers require relatively heavy output coupling, i.e.,

relatively large diffraction losses, such as are obtained in the unstable

region. We will present at the end of this paper some experimental results

Cor D ruby laser cmploying an unstable resonator which verify the-present

theory and also illus;trate useful ways in which. diffraction coupling can

be employed with n ruby or other high-gain laser.



ANALYSIS

We will carry out the analysis using the geometry of Fig. 2. The

general approach can be outlined as follows. We hypothesize that the

right-going wave leaving mirror M is a spherical wave of uniform

intensity whose virtual center lies at point P (which is not in general

the center of curvature of this mirror). This wave strikes and uniformly

illuminates the second mirror IA , from which a fraction of the original

energy is reflected as a left-going uniform spherical wave coming from the

virtual center P2  This wave in turn must illuminate mirror M and

be reflected as if it had come from the original center Pi thus closing

the loop. The positions of the hypothetical virtual centers P and P2

are found by requiring self-concistency, i.e., by requiring that eachvirtual

center be the image of the other upon reflection in the appropriate spherical

mirror. We will discuss the justification for the assumption of uniform

illumination in a later paragraph,

The positions of PI and P2 relative to the mirrors are measured

in terms of the mirror spacing L by the dimensionless factors rI and

r2 as shown in Fig. 2. These quantities are taken positive for outward

displacements as shown, and negative for inward displacements. According

to the sign convention used in resonator analyses, the mirror radii of

curvature R and R2 are negative numbers for outward curvatures, such

as those shown in Fig. 2. The requirements that P and P2 be each

5-2



M M2

F-[G. 2.--Geornetry used in analysing the unstable optical resonator
case. The points P and P, are the centers of curvature

of the spherical wavefronts; •hese in general do not coincide

with the centers of curvaturc of the mirrors.

- 6-



otherts images in the respective spherical surfaces are then expressed by

the basic lens laws

1 1 2L
. .=. 2 (g- -. )

r1  r 2 + 1 R

r 2  r1  2 2g,

Simultaneous solution of these two equations immediately yields the

results

I-9-l

± (glg2 ) -1 + g

2 - g1 - g 2

± 1 - (gg2)- -,I + 1 2
< = -i -1

2 - g g 2

Further examination shows that only the upper sign before the radical

represents a-stable solution, in the sense that if one considers a small

axial displacement of the position of one of the virtual centers away

from the steady-state values above, then. this small displacement w:ill

decrease with successive bounces for the upper sign, buL will increase

with successive bounces for the lower sign. Therefore, we consider only

the upper sign.

-7-



The results just obtained are valid for the unstable regions in all

qni drants of the mode chart, with r1  and/or r 2  becoming negative out-

side the first quadrant. Figure 3 illustrates some of the resulting

mode patterns for unstable resonators in various quadrants of the mode

chart.

If we consider as a typical example the symmetric case g1 = g 2 = g

the distance from the center of the resonator to either of the virtual

centers can be written in physical terms as

r L + L/2 = JIRIL/2 + (L/2) 2

IP!JL/2 JR jI »>L

where we assume that the radius of curvature HIR will normally be much

larger than the length L of the laser cavity. It appears that the dis-

tance to the virtual center is roughly the geometric mean of the radius

of curvature and half t1he resonator length.

We have imprlicitly assumed in the above analysis that the mirror_

dimensions; ar i' large compared to an optical wavelength. Tn addition,

,e assume that-J the Fresncl number N commonly defined in resonator anal-

yse's is aliso large. Uf n mirror?'s transverse dimension is 2a (i.e., a

strip of width 2a or a disc of diqmeter 2a), the Fresniel number is de-

fined as N a2 /LX . We assume N >> . In physical terms, this means

that the number of Fresnel zones subtcnded by one mirror as seen from the

other mirror surface is large.

-8-
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Within this assumption, it appears reasonable to assume uniform

illumination of both mirrors, as illustrated in the sketches already

given. It is clear that uniform illumination of either mirror will

lead in turn to uniform illumination of the other mirror, except for

diffraction effects due to the finite size of the first mirror. The

large Fresnel number assumption means that such diffraction effects will

be small.

DIFFRACTION LOSSES

The energy loss per bounce in these unstable resonators we obtain

from a simple geometrical calculation of how much of the energy leaving

one mirror misses striking the other mirror. We refer to these losses

as diffraction losses even though it is clear that they are basically

geometrical in origin. Diffraction in its usual sense plays no role,

its chief effect being to cause some slight diffraction modification of

the outer edges of the conical wave patterns, an effect which is ignored

by the present analysis. The main justification for our terminology is

that the losses calculated here connect smoothly with the losses in stable

or nearly stable resonatoi-s, which are clearly the result of diffraction

effects.

Assuming that a wave of unit intensity leaves mirror M , we will

use r1  to denote the fraction of its total energy reflected by mirror

M2 ' and (i - r to denote the fraction which. is lost. Similarly,

2P 2 is the fraction reflected from MI when unit intensity leaves K"

The fractional intensity returning to either mirror after a complete

round trip is thus P2 P P1P2

10



There are several possible ways to define the "average power los

per bounce," which we will denote by 8 , in an asymmetric resonator

where the losses at the two ends may not be the same., For example, one

reasonable-definition might be the average of the two fractional losses,

i.e.,

1 2.
S= Z [(- r1), + (1

Alternatively, since the fractional power transmission in one round trip

is r,2 a P1 P2  , the fractional power loss is 1 minus this, and dividing

this equally among the two bounces in a round trip gives

1 (1 1 ( 2)
>6 - fir 2) (1

Finally, we note that if the one-way powcr-gain along a laser is denoted

by G , then the threshold condition for laser oscillation is
G2 2 2 112

G = 2 G i If this is written as G(P 2 = it
1 2

is clear that the average fractional transmission per pass is r and

hence the average power loss per pass should be defined as

P= ( -r) = [1- (rP2l21/2]

For small fractional losses per bounce, these three definitions are

essentially equivalent, but -they differ significantly for large losses

por bounce. Since the third of the above definitions seems to be The

IT -



most meaningful for laser discussions, it is the one we will employ in

plotting out results. This is also the definition-employed by Fox and

Li.
1 -4,20

We consider first the strip mirror case in which the two mirrors are

long parallel strips of infinite length and given width, with curvatures

as indicated in the width direction only. It can then be shown from

simple geometrical considerations that the round-trip fractional energy

transmission is given by

r rp,2  .r1 = ± rl 2
strip 12 (r. + 1)(r 2 +1)

This expression does not contain any mirror sizes, and in fact detailed

examination shows that the diffraction losses in the unstable region are

entirely independent of mirror sizes, even in cases where one mirror is

sufficiently large so that it is not fully illuminated and all of the

losses are, at thu opposite end as in one of the sketches in Fig.' 3. The

upper sign in the P- expression is valid.f or g values in the unstable

portions of the first and third quadrants of the mode chart,, and the

lower sign is valid, in the other two quadrants.

Substitution of the expressions for r1  and r 2  leads to the general

result

2 + 1-• 1*-(glg2 f 1
]

strip + 1 - glg2)"l..

- 12 -



with the same comments concerning signs. For the case of circular mirrors

or discs, equally simple geometrical considerations lead to the result

S p2

disc strip

again independent of the sizes of the discs. It seems very likely in

fact that these results hold for any arbitrary mirror shape. It would

be a trivial exercise to extend these results to mirrors having different

radii of curvature in two transverse directions. One can hypothesize.

that the resulting transmission would be

r r" rl rp+ 1 1+

general 1 2(r{ + l +(r2 + 1)(r + l+(r; + 1)

where the primed and double-primed r values would correpond to the

radii of curvature and the associated g values in the two transverse

directions, using the same formulae as above to calculate the r values

in terms of the g values.

Figures 4 and 5 summarize the average diffraction losses per bounce

vs g for the two eases of a symmetric resonator with gl = g2 = g

In order to compare these results with earlier results we have reproduced

in Fig. 6 some results for diffraction losses vs Fresnel number N for

several stable and unstable values of g obtained by Fox and Li using

their iterative computer procedure. The dashed lines which have been

added to the figure are the results predicted by the present analysis.

There appears to be good agreement between our results and the asymptotic

13 -
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THIS ANALYSIS
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results of the present analysis f or the unstable g, value s 1.05,
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values approached by the Fox and Li results at large N values. It seems

very likely that the periodic ripples as a function of -which can be

seen in the Fox and Li results arise from the diffraction effects which

are not included in the present analysis.

One can also solve for the contours of constant loss in the g

plane by writing

1 - 1 - ( glg2 )-

i+• i -(glg
2 )2

where C = r for the strip case and P for the disc case. Inverting

this expression then leads to the result

(l.± C) 2

g(g 2  C) 2
- (1 + C)

The constant loss contours are hyperbolae, as shown in Fig. 7, where

the contours are labeled by the average loss per pass for the infinite

strip mirror case.

We should comment' at this point that..although sizable diffraction

losses are generally necessary in order to obtain transverse mode selec-

tion, it is by no means certain that the large losses we have calculated

for the unstable region will guarantee transverse mode selection. Indeed,

it can be argued that because these losses are primarily geometrical in

nature, therefore these diffraction losses will be very nearly the same

for the lowest-order and higher-order transverse modes, thus giving

little or no transverse mode selection. This question remains to be

settled by experiment or by more refined analyses.

17 -
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EXPERIMENTAL RESULTS

Experiments on an unstable laser resonator have been carried out

using a ruby laser rod which was ground with one flat end surface and

one divergent spherical end surface, in the manner of Fig. 5. The results

are in good agreement with the present theory. The ruby rod is 5 cm long

by 6.35 mm in diameter, with a radius of curvature R = 1 meter on the

divergent curved end. The curved surface was ground directly on the rod,

using brass and then copper convex laps of 15 cm diameter which had been

machined to the I meter radius of curvature. We elected to grind the

divergent surfacd directly on the laser rod, rather than taking the

possibly easier course of using external reflectors, in order to avoid

possible difficulties with multiple reflections, and also because the end

result is a resonator structure which is as simple and rugged as the ruby

rod itself. This rod was prepared before the present theory had been

developed. The value of R/L = 20 which we selected results in a loss

per bounce of - 35 , which is perhaps rather more than is desirable.

Lower loss'rods are now being prepared.

Proper alignment of the laser rod ends was determined using the

technique sketched in Fig. 8. A collimated gas laser beam is reflected

at normal incidence from the'unsilvered f) it (flat) face and also from

the silvered back (curved) face of the ruby rod. Two spots' S and S
1 2

representing the reflections from these two surfaces can then be observed

- 19 -
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FIG, 8--.Experimental technique, usd' to measure the alilnment
of the end surfa.es of the di vergent-,end laser rod.
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on a distant screen, with interference rings similar to Newton's rings

present in the overlapping region of the two spots. Coincident centering

of the two spots indicates proper alignment of the two faces.

We give in the next few paragraphs some further details of the align-

ment measurement procedure for those readers who may find this information

useful. Figure 9 shows in more detail (and with considerable exaggeration)

the geometry necessary in discussing alignment of the rod ends. As shown,

a principal optic axis OP is erected in the center of the front face of the

laser rod and normal to this face. All coordinates are measured relative

to the origin 0 As illustrated in the sketch, the barrel of the laser

rod may be slightly skew with respect to the optic axis OP This is

essentially irrelevant to the alignment of the rod faces. In the general

case, the center of curvature Q of the curved laser end is displaced

transversely from the optic axis OP by an amount b , so that the

coordinates of point Q are [-(R + L) , - b]

A collimated gas laser wavefront reflected at normal incidence from

the front face of the rod will create on a screen placed at distance D

from the front face a spot S1  of the same size as the laser rod and

with its center C on the axis OP The portion of the same incident
1

plane wavefront which is transmitted down the laser rod will-reflect from

the curved back face of the laser rod as a spherical wave diverging from

the point Q' , whose coordinates are [-(R/2 + L) , - b] . However,

due to refraction at thu front face of the laser rod, the spherical wave-

front emerging outside the rod will appear to come from the virtual center

Q , whose coordinates are [- n 0 L(R/2 + L) b] where n = 1.76 is

the index of refraction of ruby. This spherical wave, which is apertured

- 21 -
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FIG. 9--Geometry used to discuss alignmcnt of the rod ends.
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by the front face of tVe ruby rod, will produce on the screen a larger

spot S2 whose center is point C 2 (We are assuming small angles

throughout this discussion. Also, it Is not difficult to demonstrate that

the conclusions reached here will. remain valid even though the monitoring

gas laser beam strikes the front rod surface at slightly away from normal

incidence.)

From elementary geometry, the diameter d2 = Pa2 of the large spot.

S2 should increase linearly with the screen distance D according Lo

the expression

no-- ( R12 tL

where d = 2a is the diameter of the Laser iod. Fxperimental verification

of this relationship over distances 1) troeem 1 to h meters se-rved as one

verification of the radius of curvatur'e P actually outained on our laser-

rod.

In addition, the two ceraterrs C1  and C,2 are displaced from each

other by an amount na21 given by

M21 a) P

Measurement of a,,from the spot pattern yields the desired offset



value 'b which should approach zero for perfect alignment. The relation-

ship

a 2 1  D b
211

S D + nm (B/2 + L) a

2 0

D >>» n (R/2 + L)

indicates that the offset of the small spot 01 inside the large spot

S2 on a distant screen is in direct proportion to the offset of the center

of curvature Q inside the projected front face of the laser rod.

When first ground, our laser rod had its center of curvature located

outside the projected laser front face , giving two completely non-overlapping

spots on a distant screen This was corrected by re-polishing a slight

tilt on the flat front: face ralther than by attempting to correct the curved

end. Figure l0 chows two examples of the resulting spot patterns on photo-

gratphic f:ilms located at di:stances of D - 1 meter and D 3 meters.

The larger photogreph has been somewnat over-exposed to bring out the

weaker large spot rctClcted f-rom the back surface of the laser rod. This

spot exhibits a substantial amount of random structure, presumably due to

the optical inbomogeneiLy of the- laser rod which this light has twice

traversed This photograph indicates that the center of curvature of the

curved end is offset from the optic ax-is; of' tac rod by roughly 20% of the

rod radius a

P24 .



FIG. 10--Two photographs of Ithe spot patterns, obtained by replacing
the screen in Fig. 8 with a photographic film. Larger photo-
graph: D 3 meters, over-exposed. Smaller photograph:
D 1 meter, under-exposed.
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The smaller photograph in Fig. 10, taken at a smaller distance D

has been somewhat under-exposed to emphasize the interference rings which

are observed in the overlap region of the two spots. These rings result

from interference between the plane wave reflected from the front face

of the rod and the spherical wave reflected from the back face. Figure 9

makes clear that these rings should be centered on the line Qq'Q" and

that the center of the rings should be offset inside the smaller spot S1

by the amount b . The radii of any two successive rings should obey

the relationship

2 2 2[D + n1 (R/2 + L)]X
rn+l - rn =

where X is the gas laser wavelength. The visibility or the finesse of

these rings might conceivably be used to determine the optical quality of

the laser resonator, including optical inhomogeneities in the rod, although

this possibility was not explored in our experiments. During alignment

a smoothly continuous expansion or contraction of these rings could readily

be induced by slightly heating or cooling the laser rod, for eKample by

touching it briefly with a finger.

After alignment, the laser rod was heavily silvered on both ends and

tested using a conventional laser pump configuration with an FT-524 flash-

tube and surrounding MgO reflector. No laser action could be obtained at

room temperature with pump energies up to at least 1200 joules, reflecting

perhaps the sizable diffraction losses of this configuration. At 77°K

strong laser action was obtained with a threshold of - 500 joules, or

approximately the same value as threshold for this rod with more conventional

end surfaces.

- 26 -



This particular rod had smoothly polished side walls. At punp levels

S20% above the first threshold a number of effects occured indicating

the onset of a second type of oscillation. These second oscillations we

believe to be some type of' light-pipe mode of oscillation involving total

internal reflection off the polished side walls, as previously observed

by others.17-19 These effects have also been observed previously with

the same rod in other configurations. Measurements for the present dis-

cussion were not significantly affected by these oscillations.

The output through the flat~fully silvered end of the laser rod at

77°K was focused to a spot with two different lenses of different focal

lengths, in order to determine the virtual center of the output waves by

measurement of the axial position of' the focused spot. For our configura-

tion, the virtual center PI of thc_ output wave, including the effect
1

of refraction at the output face, should be located behind the flat output

face by a distance

n0 (IHI L) = 13.2 cm

One measurenent using a lens ,f 65 cu; focal length gave an experimental

value of i11.6 ± 2.0 cm , while a second measurement using a lens of 28 cm

focal length gave a value of 13.0 ± 1.3 ca. Both results are thus in good

agreement with the theory.

Measurements of' the output intensity distribution across the flat end

of the fully silvered laser rod wcro made by taking repeated photographs

of the face at ti.e same pump level with successively darker neutral density

filters inserted. The laser intensity was generally uniform across the face,

27



and darkened uniformly in successive photographs. There was a random

but reproducible fine structure to 'the light intensity which may be due

to structure in the silver coating or to inhomogeneities in the ruby itself.

The laser action was limited to a circular region filling the central 75%

to 80% of the laser rod. This fact may be due to the well-known focusing

of the pump light into the central 60/ of the ruby rod's cross-section,

or it may be caused in some way by reflection from the polished sides of

the rod. There is every reason to expect .sole sort of anomalous effects

due to side-wall reflection in a polished unstable rod when both ends are

fully silvered.

Figure 11 shows what would seem to be a near-optimum configuration for

a diffraction-coupled unstable-resonator ruby rod. Both end mirrors in

this case are intended to be as nearly totally reflecting mirrors as pos-

sible. The mirror on one end is made larger than the spot size on that

end.. The laser's useful output is then the diffraction-coupled output

in the annular ring of laser radiation escaping past the other end. This

configuration gives a mode volume which is a large fraction of the available

volume of the ruby rod, while at the same time the smaller mirror's size

can be adjust.ed so as to just avoid any contact of the oscillating fields

with the side walls of the laser rod, whether these walls are polished or

rough. As has been pointed out,'6 although the near-field output in a

case like this is an annular ring, the far-field pattern still contains

a major lobe directly on axis.

Since the output wave is a divergent spherical wave, collimation of

•this wave by a lens will be required to obtain a beam of minimum divergence.

One can envision the possibility of grinding the necessary curvature for
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FIG. 11-An unstable resonator configuration for a laser rod which
gives a diffraction-coupled output from one end only and
which avoids any coutact with the resonator side walls.
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collimat:on directly on the ruby rod in the annular region outside the

spot, thus eliminating the need for any external lens.

Experiments were conducted on our ruby rod with various smaller

mirrors placed on the flat output face in the manner of Fig. 11. Figures 12

and 13 illustrate the resulting output intensities on the flat end of the

rod. The upper left-hand photograph in each case is taken below threshold,

using the pump light for illumination but with a narrowband filter centered

at the ruby wavelength inserted before the camera, so that the photograph

is effectively taken using 6900A light. The three succeeding photographs

in each case are taken at roughly lO% , 40% and 110% above threshold, with

appropriate neutral density filters inserted. No effects due to the second

type of oscillation mentioned above were noted in these sequences; whether

this second oscillation actually occured is uncertain, since we did not

look for any of the other effects it usually causes.

The camera.in all cases is focused directly on the front face of the

laser rod. The silver spot in Fig. 12 is 2.54 min in diameter (40p of the

rod diameter) and in Fig. 13 is 3.2 mm in diameter (50% of the rod diameter).

The surrounding gray spot in the, upper left photographs is interpreted to

be the more distant and out-of-focus image of the same silver spot as

seen reflected in the curved and fully silvered back face of the rod.

The spot in Fig. 12 is apparently slightly off-center with respect to Lhe

center of curvattre of the back face. Several clam-shell chips at the

edges of the front face of the rod are apparent in the photographs.

The existence of the predicted halo or diffraction-coupled annular

ring of laser ligh-t around the silver spot is clearly evident in these

photographs. The ratio of the outer dinmeter of laser action to silver
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FIGý 12--Photographs of the output end of a ruby rod having the unstable
diffraction-coupled resonator configuration shown in Fig. l.

Top left: below threshold, shoving the 2-1/2 mm diameter silver
spot, plus its mirror image in the opposite end. Succeeding
three photographs: laser output at 10%, 40% and 110% above
threshold.
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FIG. 13--'Same as preceding figure except that the silver i

in diameter (1/2 the rod diameter) and somewhat

on the rod..
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, djiuneter predicted for this rod by the present analysis is 1.55.

' xporimental values, as well as they can be determined from these photo-

Sph, are ý 1.5 for Fig. 12 and 1.35 to 1.45 for Fig. 13, both of which

',egarded as indicating good agreement with theory. The slight discrepancy

1 Ltr,. 13 may be due to nonuniform pumping effects in the ruby rod to a

nnlhiý• of other causes or simply to the experimental inaccuracy in these

II'ILScrLments. Note that the gross size and structure of the patterns does

l.,I change from near threshold to more than twice threshold. The fine

,Jtwucture in the light. output does change to some extent. Thi; .1ay be

,liil i•i p••s' to varying inhomogeneities in the rod at different pump levels,

rintl We s.-ome exLent to dust particles on the rod end, as well as to various

'llic results which have been presented here are taken to give good

',,,i:i'Im'rirtion of the unstable resonator theory, at least in its elementary

'dir's,, O'ur further experimental efforts on this and similar rods will

,,' ehl.o'y concerned with discovering whether these oscillations occur,

I.! del:ýUcd, in a single lowcst-order diffraction-limited transverse mode.
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DISCUSSION AND CONCLUSTONS

As an addendum to the discussions given earlier in this paper concern-

ing transverse mode control anO dii r.e.m• losses, we wish to advance the

following tentative hypotheses. First, the absolute difference in losses

and hence the mode discrimination among low-order transverse modes is likely

to be small in any resonator with a large Fresnel number, whether the dif-

fraction losses are small as in a stable resonator or large as in an unstable

resonator. But, a ruby rod of any reasonable proportions has inevitably a

large Fresnel number, making mode selection difficult.

Second, the next higher-order transverse mode in an unstable resonator

such as those discussed here, for example in the infinite strip case, is

likely to be an asysmmetrical mode with very much the same mode pattern

and curvatures, as the lowest-order mode, but with a nu]] along the resonator

axisL, a iO0 phase shift between the two sides,.and a very slightly larger

diffract.on spreading of the outer edge of the mode,

The third hypotlesis is related to this. We propose that i f for

exa, mple, the mirror on the back or curved end in Fig. 11 is trimmed to

lust the size of :the geometrically predicted sc ot on that end, then the

lowest-order mode will have a slight loss past the edges of this mirror

which will be a diffraction lose in -the true sense of the phrase. More

important, it is proposed that the next higher-order transverse mode will

experience a significantly larger diffraction loss past this same edge.
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Although these losses will be small compared to the large loss at the op-

posite end, they may represent sufficient mode discrimination to achieve.

selection of the. lowest,.order mode. This type of mode selection, if work-

able, will have some practical advantages over such methods as the pinhole

mode selector, which suffers from breakdown and damage due to the high

energy density at the pinhole. Future experimental work will explore this

type of mode control.

In general, we conclude that the simple analysis presented here does

give a good first-order description of the loviestaorder mode and'its.losses-

in the general unstable resonator. The analysis has been verified by ex-

periment and by comparison with more exact treatments. Unstable laser

resonators may be of practical importance for high-gain lasers, ?uch as

ruby laser and other types, particularly in obtaining a diffraction-

coupled output.
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